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Abstract 24 

Rainfall frequency analysis, which is an important tool in hydrologic engineering, has been 25 

traditionally performed using information from gauge observations. This approach has proven to 26 

be a useful tool in planning and design for the regions where sufficient observational data are 27 

available. However, in many parts of the world where ground-based observations are sparse and 28 

limited in length, the effectiveness of statistical methods for such applications is highly limited. 29 

The sparse gauge networks over those regions, especially over remote areas and high-elevation 30 

regions, cannot represent the spatiotemporal variability of extreme rainfall events and hence 31 

preclude developing depth-duration-frequency curves (DDF) for rainfall frequency analysis.  32 

In this study, the PERSIANN-CDR dataset is used to propose a mechanism, by which satellite 33 

precipitation information could be used for rainfall frequency analysis and development of DDF 34 

curves. In the proposed framework, we first adjust the extreme precipitation time series 35 

estimated by PERSIANN-CDR using an elevation-based correction function, then use the 36 

adjusted dataset to develop DDF curves. As a proof of concept, we have implemented our 37 

proposed approach in 20 river basins in the United States with different climatic conditions and 38 

elevations. Bias adjustment results indicate that the correction model can significantly reduce the 39 

biases in PERSIANN-CDR estimates of annual maximum series, especially for high elevation 40 

regions. Comparison of the extracted DDF curves from both the original and adjusted 41 

PERSIANN-CDR data with the reported DDF curves from NOAA Atlas 14 shows that the 42 

extreme percentiles from the corrected PERSIANN-CDR are consistently closer to the gauge-43 

based estimates at the tested basins. The median relative errors of the frequency estimates at the 44 

studied basins were less than 20% in most cases. Our proposed framework has the potential for 45 

constructing DDF curves for regions with limited or sparse gauge-based observations using 46 
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remotely sensed precipitation information, and the spatiotemporal resolution of the adjusted 47 

PERSIANN-CDR data provides valuable information for various applications in remote and high 48 

elevation areas. 49 

 50 

Keywords: Rainfall Frequency Analysis, Extreme Precipitation, PERSIANN-CDR, High 51 

Elevation, Depth-Duration-Frequency Curves  52 
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1.  Introduction 53 

Rainfall Frequency Analysis (RFA) is an important tool in hydrologic engineering (Bonnin et al. 54 

2006, Hosking and Wallis 2005, Stedinger 1993). Depth-Duration-Frequency (DDF) curves, 55 

which link extreme rainfall depths to their probability of occurrence, are based on time series of 56 

extreme rainfall with different durations fitted with probability distribution functions. RFA has 57 

been traditionally performed using information from rain gauges. This approach has proven to be 58 

a useful tool in planning and design for regions where observational data is relatively abundant 59 

such as the United States or Europe. However, many parts of the world, particularly the 60 

developing countries, do not have that advantage. In many developing countries, gauge 61 

observation networks over remote and mountainous regions are still sparse and limited in terms 62 

of duration.  63 

With advances in tools and techniques for precipitation measurement using remotely sensed 64 

information, investigation of rainfall characteristics over remote and mountainous regions with 65 

limited gauge observations has become possible. In an effort to produce long and consistent 66 

climate records based on satellite observations, National Oceanic and Atmospheric Association 67 

(NOAA) under the Climate Data Record (CDR) program, in cooperation with the University of 68 

California, Irvine, developed a satellite precipitation product named the Precipitation Estimation 69 

from Remotely Sensed Information and Artificial Neural Networks-Climate Data Record 70 

(PERSIANN-CDR) (Ashouri et al. 2015). PERSIANN-CDR provides near-global (60oN to 60oS 71 

latitude and 0o to 360o longitude) precipitation information with 0.25º spatial and daily temporal 72 

resolution from 1983 to the present. Given its relatively high spatial resolution and long record, 73 

PERSIANN-CDR is a unique dataset for studying extreme precipitations and performing rainfall 74 
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frequency analysis. The length of the PERSIANN-CDR dataset (34+ years) is particularly 75 

valuable for parts of the world that lack the gauge information for rainfall frequency analysis. 76 

In recent years, several efforts have been made to develop DDF curves by employing remotely 77 

sensed precipitation information from weather radars and earth observing satellites (Eldardiry et 78 

al. 2015, Marra and Morin 2015, Overeem et al. 2008, Overeem et al. 2009, Wright et al. 2013). 79 

For instance, Overeem et al. (2009) used an 11-year gauge-adjusted radar-rainfall dataset and 80 

performed a regional frequency analysis to extract DDF curves for the Netherlands. They found 81 

that radar data, despite being useful for real-time rainfall analysis, still suffer from serious 82 

limitations, such as significant errors in extreme rainfall estimates and shortness of data, that 83 

limit their usefulness for RFA. Thus, the application of radar data for rainfall frequency analysis 84 

is hampered by: (1) its relatively short length of record which leads to sampling issues during 85 

distribution fitting process and results in larger uncertainties of the frequency estimates 86 

especially for longer durations; and, (2) estimation uncertainties and heterogeneities due to the 87 

continuous development of radar quantitative precipitation estimation (QPE) instruments and 88 

methods (Allen and DeGaetano 2005, Lombardo et al. 2006).  Eldardiry et al. (2015) quantified 89 

the effects of each of these sources of uncertainty and attributed much of the quantile estimation 90 

uncertainty to the length of the dataset. However, the conditional bias intrinsic to the radar 91 

dataset was the main reason for the observed systematic underestimations in the rainfall 92 

frequency estimates. As compared to rain gauges and radar network, satellite QPE is able to 93 

provide global coverage and has been employed in a number of studies for rainfall frequency 94 

analysis (Awadallah et al. 2011, Endreny and Imbeah 2009, Marra et al. 2017, Zhou et al. 2015). 95 

Yet, similar to radars, the application satellite QPEs for RFA is undermined by the data length 96 

issues and estimation uncertainties associated with each of the precipitation estimation products.  97 
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Among different remotely sensed precipitation datasets, PERSIANN-CDR is a viable candidate 98 

for extreme precipitation analysis given: (1) its high spatial and temporal resolution: when 99 

compared with the long-term Global Precipitation Climatology Project (GPCP) (Huffman et al. 100 

1997) product which is monthly and 2.5º by 2.5º,  PERSIANN-CDR has a higher temporal (daily 101 

) and spatial resolution (0.25º by 0.25º). The 2.5º spatial and monthly temporal resolution is not 102 

capable of capturing the spatial and temporal variability of the extreme precipitations especially 103 

over regions with complex topographic conditions, and (2) its long record: PERSIANN-CDR has 104 

relatively longer data record (34+ years and continually expanding) in comparison to  TRMM 105 

3b42 V7 (Huffman et al. 2007) with 20+ years of data, or CMORPH (Joyce et al. 2004) with 16+ 106 

years of record. Based on these strengths, Gado et al. (2017) employed the PERSIANN-CDR 107 

dataset to estimate extreme rainfall quantiles at two homogenous regions in the Western United 108 

States. They combined information from the PERSIANN-CDR pixels and nearby gauges in a 109 

homogenous region and used an innovative regional frequency analysis method to derive 110 

quantile estimates at ungauged locations.      111 

  112 

The primary goal of this research is to evaluate the feasibility of using the PERSIANN-CDR 113 

dataset for rainfall frequency analysis by constructing the required DDF curves over regions with 114 

limited gauge information or mountainous areas. As a proof of concept, this study has been 115 

conducted over the United States, where longer gauge observations with sufficient spatial 116 

coverage exist. As some studies have reported, there are biases in the PERSIANN-CDR 117 

estimates which necessitate the application of bias-adjustment techniques to improve the 118 

accuracy of the PERSIANN-CDR estimates of extreme precipitations (Miao et al. 2015, Duan et 119 

al. 2016, Shah and Mishra 2016, Yang et al. 2016, Liu et al. 2017). This study was designed with 120 
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the following  objectives: (1) to propose an elevation-based bias correction model applicable to 121 

the PERSIANN-CDR dataset and test over a large number of river basins in the continental 122 

United States, and, (2) to demonstrate the usefulness of satellite-based precipitation data in 123 

rainfall frequency analysis and use the derived frequency estimates to further verify the 124 

effectiveness of the proposed bias-correction model. In the proposed frequency analysis 125 

framework, only the PERSIANN-CDR information is used to estimate extreme precipitation 126 

quantiles and no information from nearby gauges is incorporated in the development of DDF 127 

curves (Gado et al. 2017).  128 

 129 

The rest of this paper is organized as follows: in section 2, a detailed description of gauge and 130 

PERSIANN-CDR datasets used in the study is presented, followed by the specifications of the 131 

studied basins. The bias-adjustment approach, cross-validation techniques and the frequency 132 

analysis procedures pursued in the study are introduced in section 3. Section 4 presents the 133 

results and discussion. The main findings and conclusions are summarized in Section 5.  134 

 135 

2. Data 136 

2.1. Gauge data 137 

Global Historical Climatology Network (GHCN)-Daily is a quality controlled dataset that is used 138 

in this study. This dataset contains comprehensive information of daily summaries of more than 139 

40 meteorological variables, including precipitation, temperature, snow depth, wind information, 140 

evaporation, etc. recorded by 100,000 land surface stations operated by 20 agencies around the 141 

world.  142 
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In this study, we select 20 basins located in the Eastern and Western United States (Figure 1). 143 

The daily rainfall data from rain gauges with 34+ years of observation (1/1/1983-12/31/2015) 144 

were downloaded from National Oceanic and Atmospheric Association-National Climatic Data 145 

Center (NOAA-NCDC) database (https://www.ncdc.noaa.gov/ghcnd-data-access). A brief 146 

description of the selected basins with their hydrologic unit codes (HUC) and the number of 147 

gauges with 34+ years of data selected for this study are presented in Table 1. The selected 148 

basins incorporate a wide range of elevations, from 0 to 3700 m mean sea level, and diverse 149 

climatic conditions.  150 

<Figure 1 here, please! Thanks!> 151 

Figure 1. The geographic location of the selected basins and gauges 152 

 153 

2.2. PERSIANN-CDR data 154 

PERSIANN-CDR is a retrospective multi-satellite precipitation dataset that provides near-global 155 

precipitation information, 60°N-60°S latitude and 0°-360° longitude, at 0.25° spatial resolution 156 

(around 25 km) and daily temporal resolution from 1 January 1983 to near present (Ashouri et al. 157 

2015). The PERSIANN-CDR dataset was developed by the following steps. In the first step, the 158 

PERSIANN algorithm (Hsu et al. 1997) is implemented on the archive of Gridded Satellite 159 

(GridSat-B1) Infrared Data (Knapp et al. 2011) from Geostationary Earth Orbiting satellites 160 

(GEOs). The model is pre-trained using the National Center for Environmental Prediction 161 

(NCEP) Stage IV hourly precipitation data. Then the parameters of the model are kept fixed, and 162 

the model is run on the entire historical records of GridSat-B1 to estimate the historical 163 

precipitation at 3-hourly resolution. In the next step, the estimated rain-rates are resampled to 164 

2.5° spatial resolution and bias-adjusted with GPCP product v2.2 (Adler et al. 2003) to keep it 165 
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consistent with the GPCP monthly product. Finally, the PERSIANN-CDR dataset is obtained by 166 

accumulating the 3-hourly bias adjusted data. In this research, daily PERSIANN-CDR data for 167 

the selected basins for the time period of 1/1/1983 to 12/31/2015 was used. 168 

Table 1. Summary of the features of the selected basins and gauges 169 

<Table 1 here, please! Thanks!> 170 
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3. Methodology 171 

3.1. Model Description 172 

In our proposed bias correction model, we first correct the PERSIANN-CDR estimates of 173 

Annual Maxima with gauge data at pixels with available gauge records for the study period. The 174 

time series of annual maximum precipitation from both gauge network and PERSIANN-CDR for 175 

the corresponding pixels are extracted and sorted in an ascending order. For simplicity, we 176 

denote the gauge-based annual maximum series as “GM”, and the PERSIANN-CDR annual 177 

maximum series as “PM” hereafter. A zero-intercept regression line is fitted to the scatterplot of 178 

GM and PM time series, with the corresponding PM values in the Y-axis and GM values in the 179 

X-axis (Figure 2a). The slope of this regression line (called “Correction Factor” or CF hereafter) 180 

shows the deviation of PM with respect to ground truth (GM), and it indicates the level of 181 

correction required for correcting PM to GM. A CF value larger than one indicates an 182 

overestimation of the extreme precipitation by PERSIANN-CDR, and a CF smaller than one 183 

implies the underestimation. The larger the deviation of a CF value from the one to one case, the 184 

greater the correction required for the PM (Figure 2a).  185 

To investigate the orographic characteristics of bias at each basin, the CF values at individual 186 

gauges are plotted against the corresponding gauge elevations (Figure 2b). The basin-scale plots 187 

are further merged to provide a more comprehensive view of the CF-elevation relationship 188 

(Figure 2c). Following the approach mentioned above, an exponential function is fitted to the 189 

derived CF-elevation relationship at both individual basin and multi-basins scale as shown in 190 

Figure 3c. We construct a correction function based on the CF-elevation relationship derived 191 

from 4 Western US basins and test its performance with different cross-validation and validation 192 

methods on other basins. The selected basins are San Joaquin River Basin (California), the 193 
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Willamette River Basin (Oregon), the Upper Columbia River Basin (Washington) and the 194 

Colorado Headwaters (Colorado). These basins are selected since they provided bias-elevation 195 

information at different elevations and encompassed different climatic conditions, which are 196 

representative for building a robust and effective bias correction model applicable to other river 197 

bases in the United States. Finally, the correction model based on these four selected river basins 198 

is tested on the other 16 basins with different elevation ranges and climatic conditions in the 199 

Western and Eastern U. S. 200 

 201 

 <Figure 2 here, please! Thanks!> 202 

Figure 2. Schematic view of the bias adjustment approach. (a) Estimation of correction factor at a single 203 

gauge with annual maximum series (AMS) of gauge and collocated PERSIANN-CDR pixel (b) 204 

Correction factor - elevation relationship at single basin scale (each point showing the CF for at a gauge) 205 

(c) Correction factor-elevation relationship for multiple basins and the schematic of the fitted exponential 206 

function (similar markers showing gauges from the same basin) 207 

 208 

3.2. Hold-out Cross-Validation 209 

Hold-out cross-validation is implemented to examine how the performance of the correction 210 

model is influenced by the number of basins incorporated in the model calibration, and to 211 

investigate whether incorporating information from fewer basins could improve the CDR 212 

estimates of AMS. The four basins used for training the correction function are divided into two 213 

groups. The basins are grouped in a way that information from different elevations and climates 214 

are included for each case. A correction function based on the gauge and the PERSIANN-CDR 215 

information from the basins in the first group is used to adjust the PM for the basins of the other 216 

group, and vice versa. In other words, an exponential regression function is fitted to the CF-217 
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elevation relationship from the two basins in the first group and is then used to adjust the AMS 218 

from the PERSIANN-CDR dataset for the basins in the second. The effectiveness of the bias-219 

correction functions is assessed using the root mean squared error (RMSE) of the sorted AMS 220 

from the adjusted CDR and that of gauge observations, at each of the gauge locations and basins.   221 

 222 

3.3. Comparison with Gauge Interpolation  223 

Besides comparing the original and corrected PERSIANN-CDR using the approaches mentioned 224 

above, we also include a commonly used basin-scale interpolation method for analyzing extreme 225 

precipitation over remote and mountainous areas where the gauge network is insufficient or even 226 

non-existent (Chen et al. 2008, Doumounia et al. 2014).  227 

3.3.1. Leave-One-Out Cross-Validation 228 

Precipitation intensity at an ungauged location is commonly estimated by interpolating 229 

observations from nearby gauges. Performance of the bias-adjusted PERSIANN-CDR dataset in 230 

estimating the annual maximum time series at an ungauged location is compared with the 231 

estimates from the interpolation method and the original PERSIANN-CDR dataset. At each of 232 

the calibration basins, we leave one gauge out of the training phase, and the entire time series of 233 

precipitation at this particular gauge location is constructed with the linear interpolation of 234 

observations from the remaining gauges. Then, the annual maximum series at the location of the 235 

held out gauge is extracted from the interpolated time series. The CF-elevation relationship for 236 

the selected calibration basins is derived, and the CF corresponding to the elevation of the 237 

removed gauge is used to correct the PM time series at the PERSIANN-CDR pixel over the left-238 

out gauge location. Finally, the interpolation-based annual maximum time series and the 239 

corrected PM are compared with the original GM. RMSE is used as the measure of the 240 
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difference between the calculated time series and the GM. It is worth mentioning that we repeat 241 

this procedure for all the gauges at each calibration basin to investigate the robustness of our 242 

proposed correction method. 243 

  244 

3.3.2. K-fold Cross-Validation 245 

The leave-one-out cross-validation approach described in section 3.3 evaluates the performance 246 

of the suggested bias-correction approach at a single gauge level. When there is a dense gauge 247 

network in a basin, interpolation of available gauge observations may result in better estimates of 248 

the AMS at an ungauged site. However, the gauge interpolated estimates could be less reliable 249 

when the region has limited or sparse gauge observations. Therefore, to find the breaking point 250 

where the corrected PERSIAN-CDR dataset starts to outperform the interpolation-based results, 251 

we carry out the k-fold cross-validation.  252 

At each of the four basins used in the calibration process, different percentages (i.e., 10, 20, 30, 253 

40, 50, 60, 70, and 80%) of gauges are randomly selected and left out. Then, the entire time 254 

series of precipitation for the locations of the removed gauges are constructed using the linear 255 

interpolation of the daily observations from the remaining gauges. The annual maximum series 256 

for the locations of the removed gauges are then extracted from the interpolated time series. 257 

Finally, we compare the corrected PM and the interpolation-based annual maximum time series 258 

at each gauge location with the GM for that location.  259 

Since various combinations of gauges could be selected as test samples, results depend on the 260 

distribution of the remaining gauges and the distances between the held out and nearby gauges. 261 

To reduce the sensitivity of the results to the selection of gauges, we carry out 30 random 262 

selections of the hold-out gauges and consider each selection an independent test. RMSE of the 263 



 

14 
 

interpolation-based AMS is then compared with RMSE of the corrected PM for the selected 264 

gauges in each independent run. The average RMSE of the 30 independent runs is also calculated 265 

to have the overall error estimate for different hold-out scenarios (i.e. 10, 20, 30, 40, 50, 60, 70, 266 

and 80% of gauges being held out).  267 

3.4. Satellite-based Rainfall Frequency Analysis 268 

National Oceanic and Atmospheric Administration (NOAA) Atlas 14 is a source of rainfall 269 

frequency estimates for the United States and its territories. NOAA Atlas 14 provides intensity-270 

duration-frequency (IDF) and depth-duration-frequency (DDF) curves for different regions based 271 

on the regional frequency analysis approach (Bonnin et al. 2006). NOAA Atlas 14 IDF and DDF 272 

curves were developed using the best fit among different probability distributions, including the 273 

3-parameter Generalized Extreme Value (GEV), the Generalized Normal, the Generalized 274 

Pareto, the Generalized logistic, the Pearson Type III distributions, the 4-parameter Kappa 275 

distribution; and the 5-parameter Wakeby distribution. At 80% of gauges and for sub-daily and 276 

daily durations, the GEV gave the best statistics among the 3-parameter distributions and its 277 

performance was comparable to that of 4 and 5 parameter distributions. Thus, the GEV was 278 

adopted across all gauges and durations (Bonnin et al. 2006).  279 

The GEV distribution was firstly introduced by Jenkinson (1955), and it has been widely used 280 

for frequency analysis of extreme precipitation and was demonstrated superior over other 281 

probability distribution functions in terms of fitting the annual maxima time series (AMS) (Ben-282 

Zvi 2009, Bougadis and Adamowski 2006, Fowler and Kilsby 2003, Gellens 2002, Norbiato et 283 

al. 2007, Villarini et al. 2011). The GEV distribution is a 3-parameter probability distribution 284 

that combines three extreme value distributions. The type of the distribution is characterized by 285 

the value of the shape parameter (�). Negative, zero, and positive values of the shape parameter 286 
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determines the tail behavior of the distribution as short-tailed (Weibull), light-tailed (Gumbel) 287 

and heavy-tailed (Fréchet), respectively. The GEV cumulative distribution function is given by: 288 

 289 

�(�) = exp 
− �1 +  � � ���
�  ��

��
� �  for � ≠ 0    (1) 290 

�(�) = exp �−exp �− � ���
� ���    for � = 0     (2) 291 

 292 

, where �, �, and   are the shape, location, and scale parameters, respectively.  293 

To fit the GEV distribution with the PERSIANN-CDR daily precipitation, we first adjust the 294 

data samples, in which the block maximum series of PERSIANN-CDR for 2-day, 3-day, 4-day, 295 

7-day, 10-day, 20-day, 30-day, 45-day and 60-day durations are corrected with gauge data using 296 

the same approach used for daily precipitation.  297 

The GEV distribution is fitted to the annual maxima series of corrected CDR for different 298 

durations using gevfit function from the Matlab Statistics and Machine Learning Toolbox 299 

(https://www.mathworks.com/help/stats/gevfit.html). Maximum likelihood estimation is used to 300 

estimate the parameters of the GEV distribution and the corresponding confidence intervals 301 

(Embrechts et al. 2013, Kotz and Nadarajah 2000). The return level for each return period and 302 

duration is estimated using the inverse GEV function as in equations (3) and (4): 303 

 304 

         !" = � − �
# $1 − �−%& �1 − '

"���#( for � ≠ 0     (3) 305 

!" = � −   %& �−%& �1 − '
"�� for � = 0     (4) 306 

 307 
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, where !" is the return level (i.e., the rainfall depth that on average is exceeded once in T years), 308 

and T = 1/(1-F) is the return period. Using the return levels at different return periods and annual 309 

exceedance probabilities, the DDF curves are generated. 310 

NOAA Atlas 14 (Bonnin et al. 2006) provides DDF curves with sub-daily, daily and multi-day 311 

durations. The DDFs can be downloaded from the NOAA precipitation frequency data server 312 

(https://hdsc.nws.noaa.gov/hdsc/pfds/). Since the PERSIANN-CDR dataset gives precipitation 313 

estimates at daily time scale, the daily and multi-day durations were considered in generating the 314 

DDF curves.  To remain consistent with NOAA frequency estimates, precipitation durations 315 

considered in this study are 1-day, 2-day, 3-day, 4-day, 7-day, 10-day, 20-day, 30-day, 45-day, 316 

and 60-day. It should be noted that the durations considered here do not mean precipitation 317 

occurred during the entire period, but the sliding window gives the highest value of precipitation 318 

accumulation over the selected period. Lastly, we compare the return levels based on the 319 

corrected CDR estimates with that of NOAA Atlas 14 at each duration and return period. 320 

3.5. Uncertainty assessment 321 

The confidence intervals of the return levels from the original and the adjusted PERSIANN-CDR 322 

datasets are estimated using a bootstrapping technique. We generate 1000 random samples with 323 

replacements from the original and adjust AMS at the target gauge locations. Then, the 324 

Maximum Likelihood estimation is used to calculate the parameters of the GEV distributions 325 

fitted to each of these random samples. Return levels for different durations are calculated using 326 

the inverse GEV function evaluated at different return periods. Finally, the 5th and 95th 327 

percentiles of the bootstrapped return levels at each duration and return period are taken as the 90 328 

percent confidence intervals. 329 
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4. Results and Discussion 330 

4.1. Training basins 331 

Figure 3 shows the scatterplots of the CDR and gauge AMS and the regression line equation at a 332 

number of gauges in the Willamette River Basin in the state of Oregon. In some of the gauge 333 

locations (Figures 3a-d, and g-i), the original PERSIANN-CDR has a certain degree of 334 

underestimation or overestimation, while in some other gauge locations the PERSIANN-CDR 335 

estimates are in good agreement with gauge observations (Figures 3e and 3f). 336 

An important note here is that a PERSIANN-CDR pixel has an area about 625 km2 which is 337 

much larger than the sampling area of a rain gauge. The value of a PERSIANN-CDR pixel 338 

represents the average precipitation within that pixel’s spatial domain.  In fact, even if the 339 

PERSIANN-CDR estimate at a pixel is completely accurate, its value tends to be smaller than 340 

the subpixel point measurements. In other words, by comparing a PERSIANN-CDR pixel with a 341 

point measurement, we are carrying out a “point-area” comparison. Therefore, by adjusting the 342 

PERSIANN-CDR pixels with point measurements, we are downscaling PERSIANN-CDR to 343 

point resolution. This implies that the adjusted dataset should be regarded as a point estimate, 344 

rather than an area estimate. Furthermore, there would be time discrepancies between the 345 

PERSIANN-CDR’s daily interval, and the gauges’ 24-hour intervals. Thus, the correction factor 346 

accounts for the influence of both “point-area” and time discrepancy issues.  347 

<Figure 3 here, please! Thanks!> 348 

Figure 3. Scatterplots of gauge and PERSIANN-CDR AMS and the zero intercept regression lines at 349 

sample gauge locations in Willamette River Basin. Station names are written above the scatterplots. 350 

At each of the four basins selected to build the correction model (i.e., the San Joaquin River 351 

Basin, the Willamette River Basin, the Upper Columbia River Basin, and the Colorado 352 
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Headwaters), the CF at the basin scale is computed by fitting a zero-intercept regression line to 353 

the sorted AMS of all the available gauges and that of collocated CDR pixels(Figure 4). In 354 

general, the PERSIANN-CDR estimates of AMS tend to be lower than the AMS from gauge 355 

observation, with different levels of underestimation in the different basins. The AMS estimates 356 

from the original PERSIANN-CDR dataset show considerable underestimation at Colorado 357 

Headwaters and Upper Columbia River Basins with CFs equal to 0.46 and 0.57, respectively. 358 

<Figure 4 here, please! Thanks!> 359 

Figure 4. CF at basin scale for the selected river basins in the Western United States, including (a) San 360 

Joaquin River Basin, (b) Willamette River Basin, (c) Upper Columbia River Basin, and (d) Colorado 361 

Headwaters River Basin. 362 

The scatterplots of CF and gauge elevation for different basins are shown in Figures 5(a-d). In 363 

general, an exponential relationship exists between CFs and elevations at each of the four basins. 364 

Furthermore, when merging all the available gauge information from the selected river basins 365 

together, a comprehensive view of this relationship is demonstrated (Figure 5e). As we can see 366 

from Figure 5e, the CFs become smaller with increasing elevation of the gauges. This reduction 367 

in the CFs implies the underestimation of AMS at higher elevations. 368 

<Figure 5 here, please! Thanks!> 369 

Figure 5. CF and elevation relationship at basin and multi-basin scale for (a) San Joaquin River Basin, 370 

(b) Willamette River Basin, (c) Upper Columbia River Basin, (d) Colorado Headwaters River Basin, and 371 

(e) merging all gauge information for all the basins 372 

Both IR-based (such as PERSIANN family) and Passive Microwave based (such as TMPA 373 

(Huffman et al. 2007)) precipitation products have been reported to underestimate precipitation 374 
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in high elevations (Hashemi et al. 2017). This underestimation has been related to several 375 

factors. Satellite-based precipitation products have difficulties in retrieving the solid form of 376 

precipitation (snow), which is the prevailing type of precipitation at high elevation regions and in 377 

the winter season (Hashemi et al. 2017). Moreover, since IR-based precipitation algorithms rely 378 

on the cloud top temperatures, they cannot fully detect the orographic enhancements in the liquid 379 

phase of precipitation in regions characterized by complex topographic conditions (Shige et al. 380 

2013). In addition to the technical and methodological issues inherent to the satellite 381 

precipitation estimation methods, the spatial and temporal inconsistencies between the satellite 382 

precipitation estimates and gauge observations at high elevation regions can be related to the 383 

poor sampling of gauges (Gebregiorgis and Hossain 2014). For instance, Libertino et al. (2016) 384 

observed the lowest agreement in the timing of extreme events recorded by TRMM and gauge 385 

observations in sparsely gauged regions. Miao et al. (2015) also reported low spatial and 386 

temporal agreement in terms of extreme precipitation statistics between the PERSIANN-CDR 387 

estimates and gauge observations in regions with low density of gauges. 388 

 389 

As shown in Figure 5, we fit an exponential function to the scatterplots of CF for each gauge and 390 

its corresponding elevation. This function is used to correct the CDR-based AMS at different 391 

basins in the Eastern and Western United States. However, since this correction model is based 392 

on only a few selected basins, it is necessary to be validated using different cross-validation 393 

techniques and then be tested on different basins over the continental United States. 394 

4.2. Hold-out cross-validation results 395 

We first carry out hold-out cross-validation on the four selected river basins, in which a 396 

correction function based on CF-elevation relationship is built using the information from two of 397 
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the river basins, Willamette and Upper Columbia river basins. The model is tested on the other 398 

two river basins (the San Joaquin and the Colorado Headwater River Basins), and vice versa.   399 

The goal is to examine the effect of limited gauge information and basin selection on the overall 400 

performance of the bias-correction approach.  401 

The effect of bias-correction on the empirical CDF of the PERSIANN-CDR estimates at each of 402 

the calibration basins is shown in Figure 6. At basin scale, the correction method shifts the 403 

empirical CDF of the AMS from the original CDR towards the gauge-based empirical CDF. In 404 

the Willamette River Basin and the Colorado headwaters River Basin, the corrected CDF is close 405 

to that of the observation. In the San Joaquin River Basin, the extreme quantiles from the 406 

corrected data are closer to the observation. In the Upper Columbia River basin, the corrected 407 

PERSIANN-CDR gives better estimates of the largest extreme values compared to the original 408 

PERSIANN-CDR. However, it results in an overestimation of the lower quantiles. This is 409 

consistent with the results shown in Figure 4, where the regression-based estimates gave some 410 

overestimation for values lower than 55 mm.  411 

The statistics of the hold-out cross-validation results at gauge scale are presented in Table 2. In 412 

most of the gauge locations (111 out of 127 gauges in different basins), the RMSE of the 413 

corrected PERSIANN-CDR is lower than that of the original PERSIANN-CDR. This implies the 414 

effectiveness of the proposed bias-adjustment approach in correcting the PM at pixel level even 415 

in basins with dense gauge networks. At 16 gauges, however, the correction method tends to 416 

deteriorate the original PERSIANN-CDR estimates. Among these gauges, 12 are located in low 417 

elevation regions (<550 meters from mean sea level), and more than half of them are associated 418 

with elevations less than 200 meters from mean sea level. The Upper Columbia and the 419 

Willamette River Basins have a larger portion of these gauges with 7 and 5 unsuccessful 420 
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corrections, respectively. The poor performance of the corrected CDR at those gauge locations 421 

could be partly attributed to the complex topographic conditions of those basins, which pose 422 

some challenges for the PERSIANN algorithm to estimate precipitation accurately. However, as 423 

compared to the original PERSIANN-CDR, the proposed correction approach works well for the 424 

majority of gauges in the hold-out cross-validation cases as shown with the lower RMSE values 425 

in Table 2.  426 

<Figure 6 here, please! Thanks!> 427 

Figure 6. Empirical CDF of the AMS from the gauge observations, the original and the corrected 428 

PERSIANN-CDR data at basin scale. (a) San Joaquin River Basin, (b) Willamette River Basin, 429 

(c) Upper Columbia River Basin, and (d) Colorado Headwaters River Basin 430 

 431 

In addition, the lower variability of CF at different elevations (Figure 5-e) also implies that the 432 

correction model has a lower uncertainty at gauges with higher elevation. Having accurate 433 

information about extreme precipitation at high elevation regions is very critical since these 434 

regions typically account for a considerable fraction of water resources. However, these regions 435 

are often poorly gauged and the gauge networks are not often capable of capturing the 436 

spatiotemporal variability of extreme precipitations.  437 

 438 

Table 2. The RMSE(mm) of the original and corrected PERSIANN-CDR data during hold-out 439 

cross-validation at different gauge locations and basins  440 

<Table 2 here, please! Thanks!> 441 
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4.3. Leave-one-out cross-validation 442 

In each basin, one gauge is left out at a time, and the time series of precipitation at that gauge 443 

location is constructed using linear interpolation. The annual maximum time series from the 444 

gauge interpolation and the corrected PERSIANN-CDR are compared with the gauge 445 

observations at the corresponding location (Table 3). As shown in Table 3, the RMSE values 446 

from the corrected PERSIANN-CDR are consistently lower than those of the original 447 

PERSIANN-CDR for all basins. When compared to the interpolation method, corrected 448 

PERSIANN-CDR gives lower RMSE values at the San Joaquin, the Willamette, and the 449 

Colorado Headwaters River Basins. At the Upper Columbia River Basin, however, the leave-450 

one-out cross-validation results suggest that gauge interpolation performs better than the 451 

corrected PERSIANN-CDR data.  452 

It is inferable from the gauge scale results that the correction model outperforms the interpolation 453 

method in most cases, even if only one of the gauges at a densely gauged basin is removed from 454 

the sample. The interpolation method also produces substantial errors at some gauge locations, 455 

particularly those locations where the interpolated gauge is relatively far from its surrounding 456 

gauges. It is possible that complex topography leads to different precipitation characteristics 457 

between nearby gauges and results in uncertainties in the interpolated precipitation estimates.  458 

 459 

Table 3. The RMSE (mm) from leave one out cross validation using gauge interpolation, original and 460 

corrected PERSIANN-CDR data 461 

<Table 3 here, please! Thanks!> 462 

4.4. K-fold cross-validation 463 

The leave-one-out cross-validation results in the previous section demonstrate that the 464 

interpolation-based estimates of AMS achieved by removing one of the gauges may outperform 465 
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the PERSIANN-CDR estimates at some gauges in a densely-gauged region (e.g., the Upper 466 

Columbia River Basin). In order to find the breakpoint where the corrected PERSIANN-CDR 467 

will outperform interpolation-based estimates at a basin scale, the k-fold cross validation is 468 

implemented. We randomly separate different fractions of all available gauges (0.1, 0.2…, 0.8 of 469 

the gauges) in a basin, and remove the selected gauges from the model training phase. This 470 

random selection and removal process is repeated 30 times for each fraction level. Then, the 471 

entire precipitation time series at those locations are constructed by the linear interpolation of 472 

observations from the remaining gauges in that basin. Then RMSE of AMS estimates from both 473 

corrected PERSIANN-CDR and gauge interpolation are computed at the removed gauges. 474 

Figure 7 shows the average RMSE values of AMS estimates from the interpolation method (blue 475 

line) and the corrected PERSIANN-CDR (red line) for different exclusion ratios in each river 476 

basin. The horizontal axis defines the number of the iteration, and the vertical axis presents the 477 

average RMSE value of the AMS estimates on the excluded gauge locations using the corrected 478 

PERSIANN-CDR and gauge interpolation. As the fraction of gauges being removed from the 479 

entire samples increases, the errors associated with the interpolation method become larger. In 480 

contrast, the errors produced with our proposed correction method remain consistently low for 481 

different basins over most of the test scenarios (i.e., different percentages of the gauge being 482 

removed). Moreover, the interpolation-based estimates result in large errors in some test 483 

scenarios and basins. For example, in the San Joaquin River Basin (Figure 7a), substantial errors 484 

are observed in different scenarios and over several independent runs.  485 

There are several reasons why errors from the interpolation method have large values in some of 486 

the iterations. Extreme precipitation events vary substantially in space and time. The annual 487 

maximum precipitation at different points of a basin could be results of various extreme events 488 
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occurring in different times of the year. When interpolating the daily gauge observations in a 489 

region for constructing precipitation time series at an ungauged site, heavy precipitation 490 

observed at one or more gauge locations could be falsely extended to the locations that were less 491 

impacted by the storm. Similarly, by removing some of the gauges from the population, the 492 

extreme events impacting those locations may not be represented in the interpolated time series 493 

from the remaining sample and as a result the extreme event at that location would be missed. 494 

Both of these cases may result in considerable errors in the annual maximum series estimated 495 

from the interpolation method. Other factors that contribute to the significant interpolation errors 496 

include long distance of sample gauges from the target locations, substantial elevation 497 

differences between the target locations and sample gauges, and the inability of the sample 498 

gauges to demonstrate the spatiotemporal variability of rainfall at target locations. 499 

The overall errors from the corrected PERSIANN-CDR and the interpolation method at different 500 

exclusion ratios and basins are shown in Figure 8. As the portion of gauges being left out 501 

increases, the RMSE produced by the interpolation method increases for all the basins, while the 502 

proposed correction method for PERSIANN-CDR shows stable errors over different ratios and 503 

basins with respect to the AMS results. In the San Joaquin River Basin (Figure 8a), the 504 

Willamette River Basin (Figure 8b), and the Colorado Headwaters River Basin (Figure 8d), the 505 

corrected PERSIANN-CDR yields lower RMSE values than the gauge interpolation method 506 

throughout different ratios, suggesting the effectiveness of the proposed correction approach.  In 507 

the Upper Columbia River Basin, the gauge interpolation method results in better estimates of 508 

the AMS at the ratios up to 30%. However, beyond the 30% threshold, the corrected 509 

PERSIANN-CDR produces more accurate estimates of the AMS. Therefore, 30% of total gauges 510 

is the breakpoint for the Upper Columbia River Basin in the context of interpolating point gauge 511 
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information to spatial estimates. By comparing the statistics of corrected PERSIANN-CDR and 512 

the traditional interpolation method, it is observed that the proposed correction model generates 513 

more accurate estimates of the AMS than does the linear interpolation method. The superiority of 514 

the proposed bias-correction method becomes increasingly evident as the gauges become sparser. 515 

<Figure 7 here, please! Thanks!> 516 

Figure 7. Average RMSE of AMS estimates from corrected PERSIANN-CDR (red lines) and 517 

interpolation by k-fold cross-validation (blue lines) for different exclusion ratios at: (a) the San Joaquin 518 

River Basin, (b) the Willamette River Basin, (c) the Upper Columbia River Basin, and (d) the Colorado 519 

Headwaters River Basin 520 

<Figure 8 here, please! Thanks!> 521 

Figure 8. Overall RMSE of AMS estimates from corrected PERSIANN-CDR (solid line) and 522 

interpolation (dashed line) at different basins, including (a) the San Joaquin River Basin, (b) the 523 

Willamette River Basin, (c) the Upper Columbia River Basin, and (d) the Colorado Headwaters River 524 

Basin. 525 
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4.5. Validation on the Continental U.S.  526 

In previous sections, we demonstrated the effectiveness and robustness of the proposed 527 

correction model on the four representative river basins in the western U.S. In this section, we 528 

extensively validate the correction model on 16 additional river basins with different climates 529 

and topographic conditions across the continental United States (Table 1). The selected basins 530 

for validation cover all the climate classes available in the United States based on the Köppen-531 

Geiger climate classification system. In addition, these basins cover a broad range of elevations, 532 

from low-lying regions in the state of Florida to high elevation regions in the state of Utah. These 533 

basins are also associated with various dominant precipitation mechanisms (such as convective, 534 

orographic, and cyclonic) which could influence the performance of the satellite-based 535 

precipitation products (Hong et al. 2007, Liu and Zipser 2009). 536 

Table 4 presents the errors in AMS estimates from the original and the corrected PERSIANN-537 

CDR data on the tested river basins. According to Table 4, in 15 out of the 16 basins, the 538 

correction model results in lower RMSE values compared to the original PERSIANN-CDR data. 539 

Significant improvements are observed at high elevation regions such as Dirty Devil, Rio 540 

Grande, and Upper Yellowstone river basins with 78.7 %, 72.3 %, 71.6% reduction in the RMSE 541 

of AMS, respectively. Also, the correction model considerably decreases the errors in the AMS 542 

estimates at mid-elevation regions, such as Mississippi headwaters, Upper Mississippi-Iowa, and 543 

Upper Tennessee River basins (Table 4). Among the low elevation regions, Nueces-544 

Southwestern Texas Coastal and Trinity River basins were quite successful with respect to the 545 

error reduction by the correction model. However, Pascagoula River Basin is less successful 546 

(7.3% decrease in RMSE) and South Florida River Basin fails to improve (29.7% increase in 547 

RMSE). Both of these basins are located in the South Atlantic Gulf region, which is 548 
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characterized by warm convective precipitation mechanisms. As a result of these convective 549 

systems, satellite precipitation products often fail to provide accurate estimates at these regions, 550 

as we see from the performance of raw data shown in Table 4. Both the Pascagoula and the 551 

South Florida river basins have high initial errors compared to the other river basins. Since the 552 

model is trained using the information from four river basins in the western United States with 553 

different hydroclimatic conditions, it is reasonable for it to not perform as well under temperate 554 

and tropical climatic conditions and for extremes caused by warm convective systems. 555 

 556 

Table 4. Bias-correction results in selected basins over the United States 557 

<Table 4 here, please! Thanks!> 558 

Generally, satellite precipitation estimation algorithms perform poorly in estimating precipitation 559 

from shallow and warm convective clouds (Hong et al. 2007, Kubota et al. 2009, Liu and Zipser 560 

2009, Sorooshian et al. 2002). One reason behind this poor performance is that these algorithms 561 

relate heavy precipitations to deep convective clouds and subsequently underestimate heavy 562 

precipitations associated with shallow warm clouds (Hong et al. 2007, Liu and Zipser 2009). 563 

Moreover, IR-based methods such as PERSIANN are based on cloud top temperature thresholds 564 

that are sometimes too cold for warm orographic clouds (Adler et al. 2003, Dinku et al. 2008). 565 

Finally, due to the contamination by the cold anvil cirrus clouds, IR-based precipitation estimates 566 

typically display 1-3hr phase shift compared to the maximum diurnal precipitation. These phase 567 

shifts influence the performance of IR-based methods in regions dominated by warm convective 568 

clouds (Sorooshian et al. 2002). 569 
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4.6. Multiday Annual Maximum Series 570 

In Figure 9, we present the scatterplots of the CF-elevation for multi-day duration AMS at 571 

Colorado Headwaters (Figures 9 a-j) as an illustrative example. Figures 9 (a)-(j) suggest there is 572 

a similar CF-elevation behavior in multi-day AMS analysis for different durations. Figure 9(k) 573 

presents the exponential regression functions fitted to each of the N-day maximum scatterplots. 574 

According to Figure 9 (k), as durations increase from 1 day to 60 days, the original PERSIANN-575 

CDR estimates of the AMS become more accurate (i.e., closer to the CF=1 line). This is because 576 

the PERSIANN-CDR dataset is bias-adjusted with GPCP dataset (Huffman et al. 1997) at a 577 

monthly scale and the values from the two datasets become closer to each other at longer 578 

durations. Therefore, at 30-days or 60-days analysis, the AMS estimates should be close to gauge 579 

observation. Although PERSIANN-CDR and gauge information are adjusted at a monthly scale, 580 

the monthly coefficients are applied to daily estimates (Ashouri et al. 2015). Therefore, the sub-581 

monthly or daily estimates may not be compatible with gauge observations at the corresponding 582 

scale. Furthermore, the GPCP is a gauge interpolated dataset which its pixel values are 583 

essentially the average values of gauge observations within the large grid boundary. However, 584 

here we compare the PERSIANN-CDR estimates in pixel scale with the collocated gauge values 585 

which could differ substantially from the corresponding GPCP pixel values. 586 

<Figure 9 here, please! Thanks!> 587 

Figure 9. Scatterplots of CF-elevation for different durations(a-f) and the exponential regression fitted to 588 

the CF-elevation data for different durations(k) at Colorado Headwaters Basin 589 

4.7. Depth-Duration-Frequency Curves 590 

Figure 10 shows the DDF curves derived from the adjusted CDR data, the frequency estimates 591 

from NOAA Atlas 14, and the 90% confidence intervals for a gauge location in Dirty Devil basin 592 
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in the state of Utah (USC00420849). We present return levels for daily and multi-day durations 593 

given the daily resolution of the PERSIANN-CDR dataset.  As shown in Figure 10, the 594 

frequency estimates from the original PERSIANN-CDR data are outside the 90% confidence 595 

intervals of the NOAA Atlas 14 which suggests the necessity of bias adjustment prior to 596 

employing the data for frequency analysis. On the other hand, DDFs from the adjusted 597 

PERSIANN-CDR data are well within the 90% confidence intervals of the NOAA Atlas 14 598 

DDFs. In most cases, the frequency estimates from the adjusted PERSIANN-CDR are very close 599 

to the NOAA Atlas 14 estimates which are calculated by incorporating a larger number of 600 

gauges and longer records of data for frequency estimation. Larger deviations from the gauge-601 

based estimates are observed at longer return periods, and there is no clear trend in terms of 602 

overestimation or underestimation with respect to duration. 603 

As shown in Figure 10, the confidence intervals from the gauge-based and satellite-based DDFs 604 

become larger as the return periods increase. This higher uncertainty is because of the lower 605 

sample size at the tails of the distributions. Furthermore, the confidence intervals from the 606 

original and the adjusted PERSIANN-CDR datasets are relatively comparable given the similar 607 

lengths of the two datasets. However, the uncertainty bounds from the satellite-based DDFs are 608 

larger than those from the NOAA Atlas 14. One reason behind these larger confidence intervals 609 

is the shortness of the PERSIANN-CDR dataset when compared to the gauge information used 610 

for the development of NOAA Atlas 14 DDFs. Another reason is the difference between the 611 

frequency analysis method implemented here and the method employed in the development of 612 

NOAA Atlas 14. NOAA uses the regional frequency analysis based on L-moments to estimate 613 

the frequency and intensity of extremes (Hosking and Wallis 2005). The regional frequency 614 

analysis method is used in Atlas 14 in order to relieve the uncertainties arising from a low 615 
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sample size (limited years of observations) during the GEV parameter estimation process. 616 

Although the regional frequency analysis method gives frequency estimates with lower 617 

uncertainties, it comes with the assumption of regional homogeneity in extreme rainfall 618 

characteristics which is not always a valid assumption. Here, the frequency analysis methods and 619 

uncertainties of the frequency estimates are outside of the scope of this study, and the DDF 620 

curves and their error analyses are the proof of concept. 621 

<Figure 10 here, please! Thanks!> 622 

Figure 10. Frequency estimates from corrected PERSIANN-CDR, original PERSIANN-CDR and 623 

NOAA Atlas 14 with 90% Confidence intervals at gauge USC00420849 in Dirty Devil basin, UT. The 624 

red vertical bars, blue vertical bars, and gray shaded area show the 90% Confidence intervals from 625 

corrected PERSIANN-CDR, original PERSIANN-CDR and NOAA Atlas 14, respectively. 626 

 627 

As seen in Figure 10, DDFs from the original PERSIANN-CDR suggest underestimation of the 628 

extreme precipitation quantiles for different durations. This is expected given the spatial 629 

resolution of this dataset. In fact, when considering the remotely sensed precipitation 630 

information, we should be aware that the pixel value represents a spatial average of precipitation 631 

within the extent of a pixel. In other words, the pixel value disregards the subpixel variability and 632 

even if the PERSIANN-CDR estimate at a pixel is completely accurate, its value tends to be 633 

smaller than the collocated point measurements. As a result, the extracted DDFs from a satellite 634 

pixel tend to demonstrate lower return intervals (Peleg et al. 2018b), as observed in Figure 10. 635 

It is worth noting that the estimated DDF curves are not necessarily based on the liquid-phase 636 

precipitations and the extracted AMS may comprise snowfalls as well. This is because 637 

PERSIANN-CDR and many other satellite-based precipitation estimation algorithms do not 638 
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distinguish between precipitation phases. In other words, the annual maximum time series 639 

extracted and used here may contain solid-phase precipitation extremes due to snowfalls. 640 

Although this study does not differentiate between solid and liquid phases of precipitation in 641 

order to obtain purely rain-based DDFs, the current framework can be further modified to 642 

incorporate additional observations on solid precipitations. There are two approaches to achieve 643 

this goal. One approach for this would be to limit the analysis to warm seasons, but the 644 

definitions of warm season vary among various geographic locations. Another approach would 645 

be to distinguish snowfall from rainfall, but this would require snowfall and air temperature data 646 

that are not available everywhere. Future independent research may improve upon the current 647 

study by including such additional information. 648 

Figure 11 displays the box plots of RMSE of the return level estimates from the original and 649 

corrected CDR for different durations and return periods at collocated PERSIANN-CDR pixels 650 

and gauges for different basins in the continental US. The corrected PERSIANN-CDR data was 651 

used to obtain frequency estimates at different gauge locations in the selected basins, and the 652 

results were compared with those from NOAA Atlas 14. Note that three out of the 16 basins 653 

(basins #5, #6 and #15) were located in the Pacific Northwest region and two basins (basins #8 654 

and #14) were located in the state of Texas, all of which were not covered by or were being 655 

updated in the recent volumes of NOAA Atlas 14. Thus, the frequency estimates were only 656 

validated at the remaining 11 basins as shown in Figure 11.  657 

According to Figure 11, the RMSE values for return level estimates corresponding to longer 658 

return periods are generally higher for both datasets. This is expected as the PERSIANN-CDR 659 

dataset is relatively shorter than the gauge information used for the development of NOAA Atlas 660 

14. The shorter record will result in smaller samples, higher uncertainties, and larger deviations 661 
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at the tails of the distribution. Over the tested basins, the frequency estimates from the corrected 662 

PERSIANN-CDR data have consistently lower median RMSE values than those from the 663 

original PERSIANN-CDR at different return periods. The RMSE values at the basins with higher 664 

elevations (such as Central Nevada, or Dirty Devil basins) were relatively lower than these at 665 

basins with lower elevations (such as Mississippi Headwaters, or Upper Mississippi-Iowa 666 

basins), which implies the suitability of the correction approach for high elevation regions. 667 

Furthermore, in most of the basins and at different return periods, the corrected dataset shows 668 

lower variability in RMSE of the frequency estimates. Corrected PERSIANN-CDR data also 669 

demonstrate superior performance in terms of median RMSE and variability of RMSE values at 670 

the gauges within the basins. The only case for which the corrected PERSIANN-CDR results in 671 

higher RMSE values at different return periods and durations is the South Florida basin, where it 672 

was previously shown that the correction model does not improve the AMS estimates due to the 673 

climate and the precipitation mechanism.  674 

The relative errors of the frequency estimates are calculated to show the relative magnitude of 675 

the return level errors compared to the return levels from NOAA Atlas 14. The relative error here 676 

is the difference between the frequency estimates from PERSIANN-CDR (original and bias-677 

adjusted) and NOAA Atlas 14, divided by the value from NOAA Atlas 14. Figure 12 678 

demonstrates the absolute value of the relative error for the frequency estimates at different 679 

durations and return periods from the corrected and original PERSIANN-CDR data. As shown, 680 

the relative errors from the corrected PERSIANN-CDR data have consistently lower median 681 

values, as well as, lower variability at different return periods in the tested basins. The median 682 

relative errors from the corrected data are less than 20% different from the return levels 683 

estimated by NOAA Atlas 14. Similar performance is observed when the relative errors of 684 
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frequency estimates from the two datasets are compared with respect to the extreme precipitation 685 

duration.  It is also noted that the corrected PERSIANN-CDR dataset does not show a systematic 686 

increase or decrease in the relative errors of the frequency estimates, with respect to the duration. 687 

The relative errors of the return level estimates from the original PERSIANN-CDR data tend to 688 

decrease with increasing duration. This finding is consistent with our observations in Figure 9 689 

that revealed lower errors of the original PERSIANN-CDR data for longer duration extreme 690 

events. As with Figure 11, the only case in which the corrected data resulted in higher RMSE 691 

values was the South Florida basin where the correction model did not improve the AMS 692 

estimates (Section 4.5).  693 

 694 

<Figure 11 here, please! Thanks!> 695 

Figure 11. RMSE of corrected(red) and original(blue) PERSIANN-CDR frequency estimates for the 696 

selected basins in the continental United States. 697 

 698 

    <Figure 11 cont’d here, please! Thanks!> 699 

Figure 11. Continued. 700 

<Figure 12 here, please! Thanks!> 701 

Figure 12. Absolute relative error (%) of return level estimates for different durations from corrected(red) 702 

and original(blue) PERSIANN-CDR for the selected basins in the United States. 703 

<Figure 12 cont’d here, please! Thanks!> 704 

Figure 12. Continued. 705 
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5. Summary and Conclusions 706 

In this study, the application of the PERSIANN-CDR dataset for rainfall frequency analysis was 707 

investigated. A bias correction model was developed to further correct the PERSIANN-CDR 708 

estimates of annual maximum time series at the pixel scale. The proposed correction approach 709 

was implemented in two steps: (1) Bias correction factors at limited gauge locations were 710 

estimated using linear regression analysis between annual maximum series (AMS) of gauges and 711 

collocated pixels; and (2) The correction factors from the limited gauge locations were extended 712 

to other regions where gauge data were not available. The correction model was validated at 16 713 

basins in the continental United States, covering various climates and elevations. Finally, depth-714 

duration-frequency (DDF) curves were constructed by fitting the Generalized Extreme Value 715 

distribution to the AMS from the corrected data and estimating the quantiles of extreme 716 

precipitations. Below is a summary of our main findings: 717 

1. The proposed bias correction approach has been demonstrated effective and robust in 718 

improving the accuracy of a remote sensing precipitation estimation product (i.e., 719 

PERSIANN-CDR), especially in high-elevation river basins where gauge or radar 720 

networks are either limited or non-existent.  721 

2. The hold-out cross-validation results indicated that the proposed bias correction model 722 

is capable of improving the AMS estimated by the PERSIANN-CDR dataset even in the 723 

case that limited gauge information was provided for the model calibration and the 724 

approach is generalizable to other locations with similar climates and elevations. 725 

3. As shown by the leave-one-out cross-validation, the bias adjusted PERSIANN-CDR 726 

gave better estimates of the AMS for the ungauged sites at a majority of the basins even 727 

though these basins had dense gauge networks.  728 
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4. Results from the k-fold cross-validation method suggested the proposed correction 729 

approach performs consistently better than the gauge interpolation method in estimating 730 

the AMS at a majority of regions with limited gauge observations. It was observed that 731 

the gauge interpolation may sometimes result in significant errors in AMS estimates, 732 

especially in regions with complex topography. 733 

5. The validation results over 16 basins across different climates and elevations indicated 734 

that the proposed correction method improves the PERSIANN-CDR estimates of AMS, 735 

especially in high elevation regions. 736 

6. The bias-adjusted PERSIANN-CDR is further applied to derive the return levels for 737 

different return periods and durations. The frequency estimates from the corrected 738 

PERSIANN-CDR data are compared with those from the original PERSIANN-CDR and 739 

NOAA Atlas 14. Results revealed that the frequency estimates from the corrected 740 

dataset are consistently closer to the estimates from NOAA Atlas 14. They also lie 741 

within the uncertainty bounds of NOAA Atlas 14. 742 

 743 

Thus, the PERSIANN-CDR dataset has the potential for being used in rainfall frequency analysis 744 

for the regions with limited ground-based observations.  However, despite the promising results, 745 

there are still some limitations in this dataset and the proposed correction method for the 746 

application of frequency analysis. One of these limitations is the temporal resolution of the 747 

PERSIANN-CDR dataset. The daily temporal resolution limits the investigation of extreme 748 

events with shorter durations (e.g. 3-hourly or hourly). Another limitation is that the frequency 749 

analysis here is conducted at the pixel scale using relatively limited samples. A sample of 33 750 

annual maximum values is relatively limited for fitting a 3-parameter distribution. This would 751 
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result in high uncertainties in estimating the parameters of the distribution and the return levels. 752 

One remedy to the sample size problem could be the application of regional frequency analysis 753 

methods to increase the sample size by incorporating information from the nearby locations with 754 

the same climatic conditions.  755 

It is also important to note that given the rising global temperatures, rainfall intensities especially 756 

at shorter durations are expected to increase. Therefore, the increase in the global temperature 757 

could be used as an added factor to adjust historical design rainfall intensities for the warmer 758 

temperatures that lie ahead (Peleg et al. 2018a). 759 

This work is part of an ongoing research and the presented approaches and results are intended as 760 

a proof of concept. Future research in this area may involve, bringing non-stationarities into the 761 

bias-adjustment framework (Tao et al. 2018), including covariates into the bias-adjustment 762 

framework which requires advanced optimization techniques (Yang et al. 2017), investigating 763 

the hydrological modeling applications of the corrected-PERSIANN-CDR data, and developing 764 

DDF curves for ungauged regions or areas not included in the current NOAA Atlas 14.  765 
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Table 1. Summary of the features of the selected basins and gauges 

Basin 
No. 

Basin Name HUC State(s) 
Area        
(sq. 
mi.) 

No. of 
gauges 

Gauge elevations (m) 
Köppen-Geiger 

climate class  
Climate Description 

Min Max Mean 

1 Arkansas-Keystone 1106 KS, OK 9750 12 253.0 454.2 347.7 Dfa, Cfa 
Continental, 
temperate 

2 Central Nevada Desert 1606 NV 47100 14 1299.1 2448.5 1818.6 BSk, BWk,BWh, Dfb Dry, continental 

3 Colorado Headwaters 1401 CO 9730 25 1450.8 3474.7 2646.2 BSk, Dfb, Dfc Dry, continental 

4 Dirty Devil 1407 UT, AZ 13500 11 1164.9 2987.0 2093.1 BSk,Bwk, Dfb Dry, continental 

5 Kootenai-Pend Oreille-Spokane 1701 MT, ID, WA 36600 30 548.6 2514.6 1691.5 Dsb, Dfb Continental 

6 Lower Snake 1706 ID, WA, OR 11800 23 328 2788.9 1523.3 Dfb, Dsb Continental 

7 Mississippi Headwaters 0701 MN 20200 19 278.0 454.2 372.2 Dfb Continental 

8 Nueces-Southwestern Texas Coastal 1211 TX 29000 15 43 625.4 217.8 
 

Cfa 
 

Temperate 

9 Pascagoula 0317 MS 12100 20 2.4 164.9 72.3 Cfa Temperate 

10 Rio Grande -  Elephant Butte 1302 NM 26900 19 1378.9 2621.3 1843.8 Dfb, BSk Continental, dry 

11 San Joaquin 1804 CA 15600 30 3.7 2920 537.2 Csa, BSk Temperate, dry 

12 Southern Florida 0309 FL 18700 14 0.9 10.7 4.3 Cfa, Aw Temperate, tropical  

13 Susquehanna 0205 PA, NY, MD 27200 30 78.9 566.9 313.5 Dfa, Dfb Continental 

14 Trinity 1203 TX 18000 24 103.9 339.9 208.7 Cfa Temperate 

15 Upper Columbia 1702 WA 22600 32 113.1 1978.2 689.3 Dfb, Dsb, BSk Continental, dry 

16 Upper Mississippi-Iowa 0708 IA, IL, MN 22800 25 195.1 390.1 319.0 Dfa, Dfb Continental 

17 Upper Tennessee 0601 TN, NC, GA,VA  17200 28 230.1 1143.9 555.5 Cfa Temperate 

18 Upper Yellowstone 1007 MT, WY 14400 30 944.3 2865.1 1906.2 Dfb, Dfc, BSk Continental, dry 

19 Wabash 0512 IN,IL, OH 32600 26 134.7 284.1 202.2 Dfa Continental 

20 Willamette 1709 OR 11400 46 6.4 1554.5 434.7 Csb, Dsb, Dsc 
Temperate, 
continental 

 



Table 2. The RMSE(mm) of the original and corrected PERSIANN-CDR data during hold-out 

cross-validation at different gauge locations and basins 

San Joaquin  Willamette  Upper Columbia  Colorado Headwaters 

Corrected Original  Corrected Original  Corrected Original  Corrected Original 

14.76 16.74  27.60 54.73  13.30 19.68  6.16 18.20 

19.13 34.44  5.78 5.78  3.76 3.09  4.71 18.73 

32.66 47.61  11.26 24.65  4.12 8.66  5.44 18.29 

31.41 69.29  15.46 11.15  1.32 8.61  5.25 10.88 

12.96 4.26  16.73 19.15  2.93 8.02  7.02 9.76 

43.12 71.64  30.79 50.90  7.38 31.30  6.43 19.97 

9.42 8.59  6.51 9.53  3.61 1.91  8.98 6.50 

10.03 10.10  7.42 20.92  15.25 20.72  6.21 17.25 

19.79 25.71  11.85 18.53  1.69 4.71  4.12 12.42 

6.11 5.49  10.43 11.36  4.97 8.45  4.80 16.22 

19.16 36.62  4.99 4.21  6.20 10.88  5.09 12.83 

30.47 59.50  6.65 11.81  0.96 4.25  3.74 18.69 

8.86 13.73  20.38 37.86  9.12 21.90  4.74 12.75 

23.12 10.42  9.43 7.62  3.17 4.97  4.03 19.37 

6.57 6.29  14.50 21.04  11.72 6.27  2.61 18.97 

16.38 19.47  9.79 19.52  7.36 15.71  5.66 23.01 

30.53 20.49  13.75 8.71  0.92 4.30  1.98 15.97 

3.25 9.45  13.34 40.60  5.08 9.13  4.12 13.03 

22.05 50.93  45.06 65.65  26.64 34.04  5.98 14.10 

8.12 26.77  11.12 11.52  8.59 9.39  4.32 13.81 

13.91 18.23  2.94 4.90  3.58 10.14  2.73 15.47 

13.69 23.67  2.36 6.02  8.59 4.84  3.01 15.38 

10.34 15.72  17.35 7.06  19.52 8.05  6.20 12.17 

17.74 36.22  4.41 8.65  7.33 40.04  7.29 23.12 

24.67 47.21  24.83 44.44  14.55 53.51  9.89 5.98 

19.90 31.57  11.39 4.63  9.88 19.40  - - 

12.03 27.90  9.58 27.84  8.47 28.97  - - 

16.77 20.93  3.29 3.55  19.66 14.44  - - 

- -  6.39 33.06  43.31 77.52  - - 

- -  7.81 27.53  13.28 7.61  - - 

- -  25.35 54.10  17.14 10.74  - - 

- -  8.42 39.02  - -  - - 

- -  9.66 44.36  - -  - - 

- -  29.91 66.88  - -  - - 

- -  11.66 37.27  - -  - - 

- -  13.56 48.13  - -  - - 

- -  7.22 24.98  - -  - - 

- -  6.97 34.96  - -  - - 

- -  13.64 56.23  - -  - - 

- -  16.40 24.77  - -  - - 

- -  4.53 6.53  - -  - - 

- -  12.97 10.91  - -  - - 

- -  5.74 7.32  - -  - - 

   

Note: The underlined values show the cases where the RMSE of the original PERSIANN-CDR 

is lower than that of corrected PERSIANN-CDR. 



Table 3. The RMSE (mm) from leave one out cross validation using gauge interpolation, original and 

corrected PERSIANN-CDR data 

Method 
Basin Name 

San Joaquin   Willamette   Upper Columbia   Colorado Headwaters 

Interpolation 21.61  16.06  7.87  6.84 

Corrected CDR 17.34   12.77   9.79   5.22 

Original CDR 26.45  23.95  16.22  15.31 

 

Note: The underlined value shows the case where the corrected PERSIANN-CDR method gave a 

higher RMSE value at basin scale than the interpolation method.  

 



Table 4. Bias-correction results in selected basins over the United States 

Basin No. Basin Name 
Average RMSE(mm) 

Change  

(%) Original 

PERSIANN-CDR 

Corrected 

PERSIANN-CDR 

1 Arkansas-Keystone 30.90 12.02 -61.1 

2 Central Nevada Desert 14.16 6.91 -51.2 

4 Dirty Devil 15.35 3.27 -78.7 

5 Kootenai-Pend Oreille-Spokane 24.23 9.67 -60.1 

6 Lower Snake 17.36 4.94 -71.6 

7 Mississippi Headwaters 19.12 3.42 -82.1 

8 Nueces-Southwestern Texas Coastal 28.68 17.43 -39.2 

9 Pascagoula 39.20 36.32 -7.3 

10 Rio Grande -  Elephant Butte 15.67 4.34 -72.3 

12 Southern Florida 35.40 45.92 +29.7 

13 Susquehanna 22.61 10.64 -52.9 

14 Trinity 35.62 21.87 -38.6 

16 Upper Mississippi-Iowa 23.83 7.24 -69.6 

17 Upper Tennessee 27.14 10.15 -62.6 

18 Upper Yellowstone 18.68 5.31 -71.6 

19 Wabash 23.36 11.46 -51.0 

Note: The underlined value shows the case where the adjustment failed to improve the errors. 

 




